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SOME CONSEQUENCES OF SOME ASSUMPTIONS
WITH RESPECT TO THE PHYSICAL DECAY
OF A CHAMBER AEROSOL CLOUD*

Theodore W, Horner *
Project Statistician, Booz-Allen Applied Research, Inc.,
4815 Rugby Avenue, Bethesda, Maryland

The usual piece of equiprnent for studying the survival character-
sitics of organisms suspended in an atmosphere is a gas-tight chamber
controlled with respect to relative humidity and temperature. The
mathematical formulation of the behavior of aerosol clouds injected in-
to these chambers and the viability of organisms contained in the parti-
cles of these clouds are of great interest to aerobiologists. This paper
is concerned with some of the consequences of a perticular set of assumpt-
ions with respect to the physical decay of chamber aerosol clouds. In
presenting the material, I will first touch on those aspects of chambers
and aerosol clouds that must be taken into consideration in mathemati-
cal formulations. Biological recovery curves will be touched on next.

A discussion of relationships among parameters associated with the
physical recovery of the cloud will follow -- hitting first the mathemati-
cal characterization of the assumptions, then the mathematical relation-
ships among the parameters and finally by means of slides, the relation-
ships will be pointed up visually. The paper will conclude with a short
discussion of possible applications of the work and an indication of further
work that remains to be done.

Chambers vary enormously in size. Usually they are cylindricalin
shape, being oriented either horizontally or vertically. Occasionally
they may havé a spherical or some other type of shape. The chamber
may or may not be revolving. In using a chamber the procedure is to
disseminate an aerosol cloud from a liquid slurry containing viable or-
ganisms into the chamber.

The aerosol cloud is composed of liquid droplets and the disseminating
device produces a spray from the liquid slurry which is similar to the or-
dinary nose spray used to fight the common cold. Immediately after dissem-
ination, the suspended particles start disappearing from the chamber due
to gravitational fallout and impingement on the sides of the chamber. Since

Report on work under Task 2 (Biological Aerosol Decay) or Contract
No. DA-18-064-CML-2810 with the Program Coordination Office at
Fort Detrick, Frederick, Maryland.
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the larger particles fall more rapidly than the smaller particles, the
distribution of particle sizes in the aerosol cloud changes with time.

The usual assumption is that the particle number distribution is log nor-
mal immediately after dissemination. The fraction of those particles
with radii between r and r + dr is f(r) dr where f(r) is the frequency
density function of the particle number distribution. Because of the dif-
ferential fallout of the various sized particles, the particle number distri-

bution does not remain log normal. The usual expression for differential
fallout is

h(r, t) = exp (-Krzt)

where h(r, t) is the fraction of those particles with radii between r and

r + dr that remain suspended at time t of those suspended initially.

K is a constant that depends on chamber dimensions, gravitational accel-
eration and other factors. This formula which traces to Stokes law was
first derived for stirred stationary chambers by Boyd*. Later Calder**
showed that a similar formula held for revolving chambers.

Immediately after dissemination the aerosol particles undergo an
equilibration process with respect to their moisture content and the cham-
ber atmosphere. This process ordinarily is accomplished in about a
second and so it is convenient to refer to time zero as that instant at
which the equilibration process is completed. Both the equilibration and
the dissemination process are quite drastic events in the life of an organ-
ism and so it is not surprising that many organisms which were viable in
the slurry are dead at time zero. The organisms continue to die after
time zero. The percentage of those organisms which were viable in the
slurry, which remain viable at time zero is known as the initial recovery

Eercentage.

The biological recovery percentage is the ratio, expressed in per-
centage form, of the number of viable suspended organisms at time t to
the number of suspended organisms at time t. In this definition only the

%
Boyd, Charles A., '""The Theory of Sedimentation and Decay of Aero-
sols'!, Interim Report BLIR-~7, Fort Detrick, July 1952.

&%
Calder, Kenneth L., ''Some Theoretical Aspects of the Rotating Drum,
Aerosol Chamber!, BWL Technical Note 13, 1958.
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organisms which were viable in the slurry are considered. We will re-
present the biological recovery percentage as B(t) and thus

Number of viable and suspended

B(t) = 100 organisms at time t

Number of suspended organisms
at time t

Characteristics of the biological recovery curve B(t) as it varies
with chamber size and shape, relative humidity, temperature, organism
and slurry additives are of great interest to investigators studying the
viahbility of organisms suspended in an atmosphere. The typical biological
recovery curve when plotted versus time on semilog paper is concave up-
ward. An estimate of the biological recovery percentage at time t de-
pends on data from a sample of the aerosol cloud withdrawn from the cham-
ber at time t.

There appear to be a number of empirical mathematical expressions
that do an excellent job of fitting biological recovery data.. These express-
ions will often explain 99.5 per cent of data variability. The expressions
generally have no theoretical basis and give rise to differing consequences.
Thus inferences based on these empirical curves are always suspect.

As a step toward deriving biological recovery curves from a more
fundamental foundation, BAARINC suggested some time back the heterog-
eneous initial recovery model. The model postulates that the concave up-
ward curvature of semilog plots is due to nothing more complicated than:

(1) Distribution of particle sizes,
(2) Differential fallout of the various sized particles, and

(3) Higher initial recovery percentages for organisms contained
in the larger particles.

These three assumptions are sufficient to generate the type of curva-
ture normally observed. There appears to be no question about the first
two postulates. The validity of the third remains to be proven, although
it does appear to be quite reasonable to the aerobiologists with whom 1
have been in contact.
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Essentially the heterogeneous initial recovery model states that the
biological recovery percentage at time t is 2 weighted average of the
biological recoveries associated with the various sized particles. The
weights are the fractions of the suspended organisms that are contained
in the various sized particles. These weights continuously change with

time. The mathematical formula for the biological recovery percentage
at time t is

h(r, t) ar dr

_ go /Nf(r) h(r, t) ar B(r, t) dr
(1)  B(t) = B{r, t) = gw -
Ni(r

‘o .

where Bflr, t) is the biological recovery percentage for organisms con-
tained in particles with radii between r and r + dr. The number of or-
ganisms contained in a particle of radius r is assumed to be proportional

to the radius raised to the sth power. Some work by Dr. William C. Day*
at Fort Detrick tends to indicate that s may be different from 3.

The weights mentioned a few moments ago are indicated by the
trapezoid drawn in the equation above. To point up the logic of these
weights, we let N be the number of suspended particles at time zero.
Nf(r) dr is then the number of suspended particles with radii between r
and r + dr at time zero. Multiplication of Nf(r) dr by h(r, t) yields the
number of suspended particles at time t with radii between r and r + dr.
Further multiplication by ar® yields the number of suspended organisms.
Hence the denominator of (1) is the number of suspended organisms at
time t and the trapezoid ratio is the fraction of suspended organisms
contained in particles with radii between r and r + dr.

From equation (1), it is evident that characteristics of the biologi-
cal recovery curve are intimately tied to the physical aspects of the
cloud. In any case an understanding of these physical aspects must pre-
cede attempts to ascertain the validity of the heterogeneous initial re-
covery model.

This work is described by Horner in a Biomathematics Analysis Note.
Horner, Theodore W., Fort Detrick, Maryland, Biomathematics Analysis

5082, '"tA Relaticnship Between Spore Number and Particle Size'!, Septem-
ber 14, 1961.
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What are reasonable assumptions and what are their consequences.
It appears reasonable to assume that f(r) is log normal and h(r, t) is of
the form exp (-Kr2t). Further the mass of a particle, say m(r) is prob-
ably proportional to the cube of the particle radius.

To check the validity of these assumptions and to estimate the rele-
vant parameters is not easy for three reasons:

(1) The particle number distribution does not remain log normal.
Part of the present investigation was designed to gain an understanding
of the extent of this non-log normality.’

(2) Chambers cannot be sampled at time zero and hence estimates
of the parameters of the log normal distribution at time zero must be ob-
tained by indirect means based on data collected after time zero.

~ (3) The physical recovery fraction of the cloud involves still another
factor; namely, the mass of the particle.

The physical recovery fraction, normalized to 100 per cent recovery
at time zero, is given by the formula

SNNf(r) h(r, t) br- dr
o ;
(2) - R(t)

i 3
S.O Nf(r) br~ dr

The mass of a particle is M(r) = br3. The total mass suspended at time t
and time zero respectively is given by the numerator and denominator of (2).

Following the assumptions made earlier, the recovery fraction is a

function of the mean (u), the variance o2 of the initial particle number
distribution and the chamber constant K. Thus

R(t) = R(t; u, &, K).
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In gaining info.rma'.tion‘ about the physical recovery curve one can,
on the basis of aerosol samples, do several things. Thus you can:

(a) Estimate the physical recévery fraction at time t.

(b) Estimate characteristics of the particle number distribution
such as the mean and the variance of Y = dn r. At time zero, y would be
a normally distributed variable.

Estimates of R(t| u, o, K), E(y|u, o, K, t) and Var(y|u, o, K1)
can be obtained from the data of aerosol samples, where u and o are
parameters of the log normal distribution at time zero. Knowing these
three quantities, it would be desirable to know u, ¢, and K. This would
provide a basis for checking the validity of the theory concerning K and
the log normal, exp (Krzt) system in general.

‘Our work has led to several equat_:ionsthat' should be useful in this
connection. As mentioned earlier, y was defined as y = {n r. The vari-
ables v and q will now be defined as

v = (1/o)y - u)

and

(3) ) q= -(1225 An Kt - u.

Using these definitions, the physical recovery fraction at time t can be
written as

R(t |u, o, K) = R(q, o)
where | |

(4) R(q, o) =(1/N2n) gmexp_ [-(1/2).v? -',e-2(§—3°- - V“)] dv

Thus initially, the tabulation of R would have required the four quanti-
ties t, u, o, and K to be taken into account. The q formula relates t,
K and u and thus tabulation becomes simpler in that R needs to be com-
puted only as a function of q and 0. One of the slides a little later will
show the relationships among R, q, and ¢, An approximation formula

- |

K ]
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has also been developed for computing q as a function of the physical
recovery percentage and 0“ . This formula is useful in generating a
starting value of q for iteration procedures for the solution of q given
R and o. The approximation formula is

(5) q=-(1/2) L{n(-AnR) + {A + B (n[- .(n(l-R)]} o‘z

where A and B are appropriate constants.

Using this formula suppose q is calculated given R and 0'2. If
the approximation q is now used to calculate R using equation (5), the
calculated R will not differ from the original R by more than O.02 for
the range of o values pertinent to the present investigation,

Some additional equations are listed below.

(6) E(y 'u, o, K, t)=u + oE(v I q, o)
(7) Var(y’ u, &, K, t) = 0'2 Var (v, q, ‘0)
(8) | R(t, u, t, K) = R(q, o)

where the frequency density of v is

(I/JE) exp [-(1/2) v2 - e-Z(q ] vcr)] dv

m(v) =

(1N 2n) S“” exp [-('1/2) v2 - e-Z(q B vcr)] dv

Let us look at equations (7) and (8). These are two simultaneous equations.
Having estimates of Var y and R(t) available at time t, one can solve for
estimates of q and ¢. Estimates of q and ¢ make possible an estimate of
¢E(v | q, o). This latter estimate, when coupled with an estimate of
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E(y l u, o, K, t), makes possible an estimate of u. Equation (3) can
be solved for the chamber constant K. This constant is a function of

q and u. Since estimates of q and u are available, it is now possible

to estimate K. Thus from estimates of q and u are available, it is now
possible to estimate K. Thus, from estimates of R, Ey‘ and Var y at

time t, one can determine U, o, and K.

The relationships among these quantities can best be pointed up by
means of graphs. For the graphs to be meaningful, it is necessary to
make appropriate choices for the parameters u and o o' the log normal
distribution of particle sizes at time zero. For u, the range from O.5
to 5}_,(, seems appropriate in the subject matter area to which this in-
vestigation is related. Similarly, an upper bound for o appears to be in
the neighborhood of 1. 5. To arrive at this latter number we define two
radii T and r, such that 50 and 84.13 per cent of the particles at time

zero have radii less than r. and r,, respectively. Under these assump--

1 2’
tions,
In r,=uto
and
In r=u
Hence
¢ = An (rz/rl)
and
_c
T /Ty = e

When o is 1.5, the ratio of the two radii is 4.4817. Thus the radius
associated with the 84.13 per cent point is 4. 48 times the radius for
the 50 per cent point when o =1.5. Thus o =1.5 appears to be a rea-
sonable upper bound for the subject matter under investigation. In de-
veloping tables, the values of ¢ shown below were used.

1l
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z » T2/
0.40547 1.0
0. 69315 2.0
1.09861 3.0
1. 38629 4.0

Figuresl, 2, 3, and 4 [ﬁgures are at the end of this article] illus~
trate various parameter relationships. Figure 1 shows the relationships
among the physical recovery fraction, q and o2 . Each line is associated
with a different physical recovery fraction. These lines are almost but
not quite straight; the curvature is most pronounced in the lines asso-
ciated with the lower physical recoveries.

Figure 2 shows the relationships between q, R, and Var y, each line
being associated with a different physical recovery fraction. Again these
lines are almost straight; the greatest curvature being associated with
the lowest physical recovery fractions.

The third figure shows the relationships among (1/Var v), Var y and
R. This graph can be used to estimate 2 from estimates of R and Var y.
The estimate of 02 is the product of the estimates of Var y and (1/Var v).
Thus suppose R at time t is estimated as 50 per cent and Var y is esti-
mated as O.43. The value of (I/Var v) is then estimated as 1.12. The
estimate of 02 is then (0.43) x (1.12) = O. 48.

The final figure shows relationships among (-0 Ev), R and the standard
deviation of y. The estimate of u is found by adding (- ¢ Ev) to the estimate
of Ey. Again suppose R = 0. 50 and 0'}2’ = 0.43. In this case °y = 0. 66 and

the estimate of (-0 Ev) is 0.065/}_. Thus the estimate of u is found by
adding O. 065 to the estimate of uy.

Hopefully, the relationships which have been developed will lead to

(1) Quick and efficient estimation procedures for the parameters
which characterize physical decay in aerosol chamber trials,

(2) Aids useful in designing and interpreting chamber experiments

(3) Procedures for testing the validity of the common assumptions
with respect to physical decay, and
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(4) Ways of evaluating the bias in methods of estimating biological
recovery percentages which employ mass tracer data.

Finally and most important of all, these relationships constitute a start
toward developing methods for testing the validity of the heterogeneous
initial recovery model for biological recovery.
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Figure 1. Graph of q versus 0° for various values of R where

QD
R =(1/VEM | exp[-1/2) v* - e~2(a-30° ""”_]dv.
-0
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Figure 2, Values of q versus Var y at various
physical recovery fractions.
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